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We describe a class of transformations in a super phase space (we call them D- 
transformations) which play the role of ordinary canonical transformations in 
theories with second-class constraints. Namely, in such theories they preserve 
the form invariance of equations of motion, their quantum analogs are unitary 
transformations, and the measure of integration in the corresponding Hamiltonian 
path integral is invariant under these transformations. 

1. I N T R O D U C T I O N  

Canonical transformations play an important role in the Hamiltonian 
formulation of classical mechanics without constraints (Landau and Lifshitz, 
1973). They preserve the form invariance of the Hamiltonian equations of 
motion and their quantum analogs are unitary transformations (Dirac, 1958; 
Weyl, 1950). Canonical transformations constitute also a powerful tool of  
classical mechanics, which allow one often to simplify solutions of the theory. 
For example, it is enough to mention that evolution is also a canonical 
transformation. Quantum implementation of  canonical transformations have 
been discussed in numerous papers (e.g., DeWitt, 1951; Itzykson, 1967; 
Moshinsky and Quesne, 1971; Anderson, 1994). However, modem physical 
theories in their classical versions are mostly singular (in particular, gauge) 
ones, which meaias that in the Hamiltonian formulation they are theories with 
constraints (Dirac, 1964; Gitman and Tyutin, 1986, 1990). Equations of  a 
Hamiltonian theory with constraints are not form invariant under canonical 
transformations, but this circumstance allows one to use these transformations 
to simplify the equations and to clarify the structure of  the gauge theory in 
the Hamiltonian formulation. Moreover, formulations of  a gauge theory in 
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two different gauges are connected by means of a canonical transformation 
(Gitman and Tyutin, 1983, 1986, 1987, 1990). In the general case, equations 
of constraints change their form under the canonical transformations. This 
is an indirect indication that the quantum version of the canonical transforma- 
tions in constrained theories is not a unitary transformation (of course, we are 
speaking about the complete theory, but not about its reduced unconstrained 
version). Thus, in the case of constrained theories one can believe that besides 
the canonical transformation, another kind of transformation has to exist, 
which preserves the form invariance of the equations of motion and which 
induces unitary transformations on the quantum level. Namely, they play the 
role of ordinary canonical transformations in theories without constraints. 

In this paper we describe such a kind of transformation for theories with 
second-class constraints, which is, in fact, a general case, because a theory 
with first-class constraints can be reduced to a theory with second-class 
constraints by a gauge fixing. We call such transformations D-transformations. 

2. GENERALIZED CANONICAL TRANSFORMATIONS 

Let a classical mechanics be given with phase variables x I = (.qA), A = 
1 . . . . .  2n [in the general case they belong to Berezin algebra (Berezin, 1965, 
1983, 1987; Gitman and Tyutin, 1986, 1990) and have the Grassmann parities 
p(~qA) = PA] and with a symplectic metrics AAB('q), which defines a generalized 
super Poisson bracket for any two functions F(-q) and G('q) with definite 
Grassmann parities P(F) and P(G), 

{F, G} (~'A) = OrF AAO('q) OtG (2.1) 
0-q A 0-q B 

where 0r/0-q a and 0t/0"q B are the right and left derivatives, respectively. The 
metrics AAB(-q) is a T2-antisymmetric supermatrix (Gitman and Tyutin, 1986, 
1990), P(A AB) = PA + PB, AAB('q) = --(-- I)PAPsASA(~), obeying the condition 

O~ABC(-q) 
- -  + cycl(A, B, C) = 0 (2.2) (--  1)P(A)'(C)AAO('q) O'q 0 

which is necessary and sufficient for the bracket (2.1) to be super antisymmet- 
ric and satisfy the super Jacobi identity, 

{F, G} (n'A) = - ( -  l)P(~l'(u"){G, F} ('l'A) 

(-1)l'(v)P(m{ {F, G} ('l'a), K} ('1'^) + cycl(F, G, K) = 0 (2.3) 

In addition, the following property holds: 

{F, GK} ('l'^) = {F, G]('I,A)K + (-1)P(VlP(a)G{F, K} ('I,A) (2.4) 
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It is easy to see that 

In the case 

Aan0q ) = [.qA, ,qB}(ri,A) (2.5) 

the generalized Poisson bracket (2.1) coincides with the ordinary super Pois- 
son bracket, 

{F, G} Ol'e) = o r e  E As OtG 
o,qa O.qn = {F, G} (2.6) 

If "q' = "q'('q) is a nonsingular change of  variables, then the generalized 
Poisson bracket (2.1) acquires in the primed variables the form 

OrF' diG' (2.7) 
{F, G} 01'A) = {F', G'} (~''^') = O.q, A A'AS(Xl ') O,q, s 

where 

V'(xl') = F('q), G'OI') = G(~) 

Ofq 'B 
A,an(.q,) _ Or'q'a ACO(~) _ {.q,a, .q,n}01,A) (2.8) 

O,q c O.q o 

By analogy with the case of the ordinary Poisson bracket one can ask 
which kind of  transformation keeps the generalized Poisson bracket form 
invariant, nameiy when the following relation holds: 

A'an('q ') = AaB('q ') (2.9) 

We will call such transformations generalized canonical transformations. 
They are just canonical transformations in the case when the generalized 
Poisson bracket coincides with the ordinary Poisson bracket. 

Consider transformations of  the form 

T I' = [exp(g')]'q (2. I0) 

where the operator if' is defined by its action on functions of  al, 

l~V(-q) = {F, W} ~ (2.11) 

where W('q) [P(W) = 0] is a generating function of  the transformation. We 
are going to demonstrate that transformations of the form (2.10) are just 
the generalized canonical transformations connected continuously with the 
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identical transformation. To this end one has first to verify that the following 
property holds: 

e~'F('q) = F(e~"q) = F('q') (2.12) 

Indeed, one can see, using (2.4), that 

eCVF(~)e -~' -- ~ [# ,  [gg, . . . .  [I,~', FI -" "11 = e~'F('n) (2.13) 
n=O 

Then, one can write, for example, for any analytic function F01), 

eCeF('q) = e~"F('q)e -g'= F(e~'qe -(v) = F(eei"q) = F('q') 

Now, let us introduce a function FAB(ot, "q), P(ot) -- 0, 

Fan( ~x, 0) = {e~#'q a, e~#~ln} ('~'A) (2.14) 

At ot = 0 this function coincides with Aan('q) [see (2.5)] and at ot = 1 with 
A'An('q ') [see (2.8) and (2.10)], 

Fan(0, "q) = AaS('q) (2.15) 

Fan(l ,  "q) = A'an('q ') (2.16) 

Differentiating (2.14) with respect to cx and using the Jacoby identity (2.3), 
one can get an equation for the function Fan(~, "q), 

OFaB(~ "q) -- r "q) (2.17) 
0~t 

A solution of  this equation which obeys the initial condition (2.15) has 
the form 

FAB(ot, "q) = e~'AAB('q) (2.18) 

Taking into account equation (2.16) and the property (2.12), we get just the 
condition (2.9) of  the form invariance of the generalized Poisson bracket. 
Thus, the transformations (2.10) are generalized canonical transformations 
connected continuously with the identical transformation. By definition they 
preserve the form invariance of the generalized Poisson bracket, 

{F, G} (~'n) = {F', G'} (~''A), F'('q') = F('q), G'(TI' ) = G('q) 
(2.19) 

In particular, the infinitesimal form of the generalized canonical transforma- 
tions is 

-q' = -q + ~'q, 8 0 = {'q, 8W} (~,A) (2.20) 

Let us suppose now that the classical mechanics in question has equations 
of motion of the form 
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= {xl, H} (~'A) (2.21) 

i.e., the Hamiltonian equations of  motion, but with a generalized Poisson 
bracket. How are they transformed under the generalized canonical transfor- 
mations (2.20)? The result is 

OBW 
~'  = {'q', H'  }(~'.A), H'0q ' )  = H(Tq) + - -  (2.22) 

dt 

This means that equation (2.21) is form invariant under the generalized 
canonical transformations; only the Hamiltonian is changed, similar to the 
usual case of  the canonical transformations and Hamiltonian equations of  
motion with the ordinary Poisson bracket. To see this, one has to calculate 
the time derivative of  rl', using (2.21), 

q]' = {~q + g~l, H} ('~'A) + ~q' 05W~('~'A)0t J "q + B'q, H + Ot J 

Taking into account (2.21), (2.20), and (2.19), we obtain just equations (2.22). 
If a physical quantity is represented by a function F('q) in the variables 

xl, then in the primed variables (2.10) it will be represented by a function 
F'(-q') which is related to the former one by F'(xl ')  = FOq). In the infinitesimal 
form this results in F'( 'q) = F~w('q), according to (2.22), 

Fsw('q) = F(n) + ~F('q), ~F(xl) = {~W, F} (~'A) (2.23) 

Variations of  the phase variables in course of  the time evolution (2.20) 
can also be considered as a generalized canonical transformation. Namely, 
let x I be the phase variables at a time instant t, and ~q0 be those at the time 
instant t = 0. Then -q are some function of "q0 and of  t as a parameter, x I = 
tP(~i0, t). One can see that the transformation from "qo to ~ is a generalized 
canonical transformation. Moreover, this transformation can be formally writ- 
ten explicitly. Indeed, considering for simplicity time-independent Hamilto- 
nians only, one can see that the solution of  the Cauchy problem for equation 
(2.20), with the initial data Xl0 at t = 0, has the form 

"q = ea'-qo (2.24) 

where the operator /q  is defined by its action on functions F('qo) of  "qo as 
HF0qo) = {F(~0), H0qo)} ('I~A). Because the transformation (2.24) is the 
generalized canonical transformation [see (2.10)] with the generating function 
H('qo), one has only to prove that (2.24) obeys the equation of  motion (2.20). 
Taking the time derivative from (2.24), one gets 

q] = ftef~'~qo = { eat,qo, H(~o)} ('10,̂ ) (2.25) 
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Using (2.12), one can verify that 

H(eat'qo) = eatn('qo) = n('q0) (2.26) 

Substituting (2.26) into (2.25) and taking into account the property (2.19), 
one obtains 

"il = { eat'qo, H( eat'qo) } (~~ = {'q,/-/(1"1)} ('~ 

which proves our claim. 

3. D-TRANSFORMATIONS 

Now we apply the previous consideration to theories with constraints, 
namely, with second-class constraints. 

Let us consider a theory with second-class constraints �9 = (Ot('q)), in 
the Hamiltonian formulation, described by phase variables ,qA, A = 1 . . . . .  
2n, half of which are coordinates q and half are moments p, so that .qA = 
(qa, Pa), A = ([, a), [ = 1, 2, a = 1 . . . . .  n. An important object in such 
theories is the Dirac bracket between two functions F(xl) and G('q), 

{F, G}o<,t,) = {F, G} - {F, O/}{cI), cD}ff:{cDl,, G} (3.1) 

It is easy to see that the Dirac bracket is a particular case of the generalized 
Poisson bracket (2.1), 

{F, G}o(~) = {F, G} (~'A) (3.2) 

with 

AAB = EAB _ {~A, (I)t} {(I), (1)}~l{(1)/,, .fIB} = {1.]A, .QB}D.((I~ ) (3.3) 

If so, then one can consider the generalized canonical transformations for 
such a generalized Poisson bracket. This special but important case of the 
generalized canonical transformations we will call D-transformations. Thus, 
by the definition, the D-transformation ~q ----> -q' preserves the form invariance 
of the Dirac bracket, 2 

{F, G}o(~,) = {F', G'}~(~,) (3.4) 

As we will see further, in theories with second-class constraints, D-transforma- 
tions play the same role that canonical transformations play in theories with- 
out constraints. 

An explicit form of  D-transformations connected continuously with the 
identical transformation can be extracted from (2.10) and (3.2), 

2A prime on the Dirac bracket in (3.4) means that the latter is calculated in the primed variables. 



Transformations in Theories with Constraints 93 

,~t ~ e~.q ,  

and in the infinitesimal form 

-,1' =-q  + ~-q, 

l~F(lq) = {F, W}o(,~) (3.5) 

where 

where W('q) is a generating function of the D-transformation. 
One can see that D-transformations differ from canonical ones only 

by terms proportional to constraints. Indeed, the variation ~-q under the 
D-transformation can be written as 

~'~ = {',1, ~ W } o ~ r  = {'q, ~W'} + {r 

and { r } accumulates terms proportional to constraints, or terms which vanish 
on the constraint surface. 

Equations of motion for a theory with second-class constraints can be 
written in the form (Dirac, 1964) 

"il = { %  H}o(a,) (3.8) 

r = 0 (3.9) 

They consist of  two equations, a Hamiltonian equation (3.8) with the Dirac 
bracket, which is in the same time a generalized Poisson bracket, and the 
equation of constraints (3.9). Using the consideration of Section 2, one can 
say that equation (3.8) is form invariant under the D-transformations: It turns 
also out that the equation of constraints (3.9) is form invariant under the D- 
transformations. Indeed, let r = 0 be the equation of  constraints in 
variables -q' connected to "q by a D-transformation; then the relation 

r = r (3.10) 

has to hold. One can consider this as a functional equation for the function 
r  It is easy to verify that they have a solution r  = r  Indeed, consider 
the function r Using the formula (2.12) and a well-known property of 
the Dirac bracket, {F, dPt}o(a, ~ = O, for any function F(xl) and any constraint 
r we get 

r = ea'r = r (3.11) 

This means that the constraints surface r = 0 after the D-transformation 
can be described by the same function, i.e., by the equation r = 0. 

(3.7) 

~'q = {'q, ~W}o(r  (3.6) 



94 Gitman 

Thus, equations of motion of theories with second-class constraints are 
form invariant under the D-transformations. Namely, equations (3.8) and 
(3.9) have the following form after the D-transformation (3.6): 

~1' = {'q', H' } b(~,), ,:t, ( ,q ' ) = o ,  H'( 'q ' )  = H('q) + - -  
OgW 

Ot 

(3.12) 

o r  

"q={'q,H~w+OSW~ , ~ ( ' q )  = 0 
0t Jo(,~) 

(3.13) 

and the physical quantity F is described by the function F~w('q) [see (2.23)] 

F'('q) = FswOI) = F(~) + {SW, FID(~,) (3.14) 

In the special canonical variables (oJ, s in which the equation of con- 
straints has a simple form l-I = 0 [Gitman and Tyutin, 1983, 1986, 1987, 
1990) and the Dirac bracket reduces to the Poisson one in the variable o~, so 
that the latter is a physical variable on the constraints surface, D-transforma- 
tions have a simple meaning: they are canonical transformations in the sector 
of physical variable o~ with no change of variable l-l. This is natural because 
the D-transformations do not change the form of the constraints. 

4. QUANTUM IMPLEMENTATION OF D-TRANSFORMATIONS 

One can ask which kind of transformation in quantum theory corresponds 
to D-transformations in classical theory. It is easy to see that these are unitary 
transformations and vice versa: unitary transformations in a quantum theory 
with constraints induce in a sense D-transformations in the corresponding 
classical theory. From this point of view D-transformations in theories with 
constraints play a role similar to that of the canonical transformations in 
theories without constraints. To prove this, we have to remember that in a 
classical theory D-transformations are transformations of trajectories-states 
of the theory. Thus, to speak literally, some transformations of quantum states- 
vectors in a Hilbert space have to correspond to them in a quantum theory. 

Let us have a classical theory with second-class constraints which is 
described by the equations of motion (3.8), (3.9). Its canonical quantization 
(Dirac, 1964; Gitman and Tyutin, 1986, 1990) consists formally in a transition 
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from the classical variables ~1 to the quantum operators r P(ql a) = P(~l a) = 
Pa, which obeys the operator relations 3 

[~qA, .~lO} = ih{~qa, ~qn}O(,~) = ihAAB(~q), CI~(~) = 0 (4 .1 )  

and which is supposed to be realized in a Hilbert space ~ of vectors IV). 
Then one has to assign the operator/~ to each physical quantity F which 
is described in the classical,,theory by the function F('q), using a certain 
correspondence rule, P = F('q). The time evolution of the state vectors is 

defined by the quantum Hamiltonian/q = H('q), according to the Schrti- 
dinger equation 

0[~) _/:/iV) (4.2) ih Ot 

Let us consider a unitary transformation of the state vectors, IV) --~ 
IV')  = 01~), where 0 is some unitary operator, 0§  = 1, which one can 
write in the form 

{i} 0 = exp - ~  W (4.3) 

where if' is a Hermitian operator, if'+ = I~, further called the quantum 
generator of the transformation. In the infinitesimal form (r162 ---) ~ff'), simpli- 
fying the consideration, we have IV') = IV) + ~ IV), ~ IV) = -(ilh) ~WI ~). 

One can find the variation of operators of physical quantities from the 
condition ('tit I/~l ~ )  = (~ '  I/~' I~ ' ) ,  which results in 

i [8I~, ~ (4.4) P'  = Psw  = O P O  § = P + s P ,  = 

If 8W(~q) is a symbol for the operator 81~, 8W = 8W('q), and F(~q) is one of 
the operators P (the classic~ function which describes the physical quantity 
in the variables "q), P = F('q), then it follows from (4.1) that 

A 

BP = {Blff, F}o~,~) + o(h) 

Recalling formula (3.14), one can write 

(4.5) 

3 By[A, B } we denote a generalized commutator of two operators ,4 and/~, with definite parities 
P(A) and P(/~), [.4, /~} = ,4/~ - (-l)t'<a)ec~)/~/]. An overbar with a caret above a classical 
function A('q) here and further means a certain rule of  correspondence between the function 
and the corresponding quantum operator A], ,~ = A(-q). The former is in this case the symbol 
of  the operator (Berezin, 1965, 1983, 1987). The choice of this rule is not important in 
our considerations. 
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A 

&w = Fsw('0) + o(~) (4.6) 

Thus, operators of physical quantities transformed in the course of a unitary 
transformation have as their symbols initial classical functions transformed 
by a D-transformation, with the generating function being a classical symbol 
of the quantum generator of the unitary transformation. 

The Schr6dinger equation for transformed vectors can be derived from 
(4.2) and has the form 

ih alxlt') [l ' l~') '  I:I' = lCI~w + atO ~ (4.7) 

Thus, the time evolution of the state vectors after the unitary transformation 
is governed by a quantum Hamiltonian with the classical symbol 

H'(n) =Haw(n)  + O~W(~) + o(h) (4.8) 
at 

That fact and (4.1) allow one to see that the classical limit of the quantum 
theory after the unitary transformation (4.3) is described by equations (3.13) 
and therefore corresponds to the D-transformed classical theory with a gener- 
ating function which is a classical symbol of  the quantum generator of the 
unitary transformation. In the same way one can prove the inverse statement: 
if we have a classical theory and its D-transformed formulation, then quantum 
versions of both theories are connected by a unitary transformation. In addi- 
tion, the classical generating function of the D-transformation and the quantum 
generator of the unitary transformation are connected in the above manner. 

Consider now the generating functional Z(J) of Green's functions for a 
theory with second-class constraints in the form of a Hamiltonian path integral 
and the behavior of the latter under the D-transformations. Such an integral 
can be written in the form 

i 
(4.9) 

where 

Sj(lq) = f [p,rt~ - Hj(Xl)] dt, Hj(n )  = H(~) + ]a~ A 

is the classical action with sources, JA(t) are sources to the variables "qA(t), 
P(JA)  = p(~qA) = PA, and the measure ~-q has the form (Faddeev, 1969; 
Fradkin, 1973) 
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~a] = Sdet~t2{~, (I)}8(~) D-q (4.10) 

with Sdet{~, ~}  denoting the superdeterminant of the matrix {~b t, ~,,}. 
As is known, if a change of variables -q' = -q'(-q) is a canonical transfor- 

mation, then I Ber "q'('q) I = 1, where Ber "q'('q) is the Berezinian (Berezin, 
1965, 1983, 1987) of the change of  variables, Ber -q'(-q) = Sdet a/q'a/a~l B. 
In particular, for infinitesimal canonical transformations "q' = "q + 8"q, 8~1 
= {'q, 8W}, Ber -q'('q) = 1. In the case of theories without constraints, 
the measure ~-q, (4.10), reduces to D-q and is invariant under canonical 
transformations, but in theories with constraints it is not. However, this 
measure is invariant under D-transformations, 

which confirms once again that the latter play the role of canonical transforma- 
tions in theories with constraints. To see this one can use the relation (Gitman 
and Tyutin, 1983, 1987) 

Sdetltz{~, (I)}8(~)],l--),l'('l) Ber "q'('q) = Sdetlt2{(I), ~ ] 8 ( ~ )  (4.11) 

where -q' = -q + {-q, 8W}o(a,). 
The invariance of  the measure (4.10) under D-transformations induces 

an invariance of  the integral (4.9) under the transformation of  the action Sj ('q), 

Ss(~) --+ Sj('q) = SJOl'Oq)) = Sj(~I) + 8S~01) (4.12) 

where ~l'('q) is a D-transformation, 

o r  

It is enough to know 8Sj('q) on the constraints surface, because the integration 
in (4.13) only goes over this surface due to the 8-function in the measure 
(4.10). Taking into account the representation (3.7), one can find an expression 
for 8Sj('q) on the constraints surface, 

8SjOq) [ r (paq-SW) t~ a ~--- tin 8 W -  {Hj, 8W}o(r dt 

(4.14) 
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In field theory usually ti,,out ---> • and trajectories of integration vanish at 
these time limits. Considering D-transformations, which do not change this 
property, one gets 

I [ [ ( ~ W -  {Hj,~W}o,,~,)dt]exP(hS~('q)}~'q=O (4.15) 

This relation can be used to obtain different kinds of equations for the 
generating functional and therefore for Green's functions. For example, let 
us consider D-transformations with two types of generating functions: ~W 
= ea'q A and ~W = ~tO/('q), with arbitrary "small" time-dependent functions 
CA(t) and ~l(t). Using these ~W in (4.15), we get two relations, 

I[~A--{'I]A, nj}o(dp)] exp( h S~(rl)} ~ X l = 0  

I { /  } 
q~(~l) exp ~ Sj(~) ~ n  = 0 (4.16) 

which can be rewritten in the form of Schwinger equations for the func- 
tional Z(J), 

[~]A -- {.qA, Hj}Dtep)].q~sI/8(ij)Z(j) = 0, �9 Z(J) = 0 (4.17) 

5. REMARKS 

We have demonstrated that in theories with second-class constraints D- 
transformations play the usual role of canonical transformations. In fact, in 
Gitman and Tyutin (1986, 1990) we already used infinitesimal D-transforma- 
tions for technical reasons, but at that time we did not fully realize their 
special role. 
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